The spread of rumors along with breaking events seriously hinders the truth in the era of social media. Previous studies reveal that due to the lack of annotated resources, rumors presented in minority languages are hard to be detected. Furthermore, the unforeseen breaking events not involved in yesterday's news exacerbate the scarcity of data resources. In this work, we propose a novel zero-shot framework based on prompt learning to detect rumors falling in different domains or presented in different languages. More specifically, we firstly represent rumor circulated on social media as diverse propagation threads, then design a hierarchical prompt encoding mechanism to learn language-agnostic contextual representations for both prompts and rumor data. To further enhance domain adaptation, we model the domain-invariant structural features from the propagation threads, to incorporate structural position representations of influential community response. In addition, a new virtual response augmentation method is used to improve model training. Extensive experiments conducted on three real-world datasets demonstrate that our proposed model achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
Designing and analyzing model-based RL (MBRL) algorithms with guaranteed monotonic improvement has been challenging, mainly due to the interdependence between policy optimization and model learning. Existing discrepancy bounds generally ignore the impacts of model shifts, and their corresponding algorithms are prone to degrade performance by drastic model updating. In this work, we first propose a novel and general theoretical scheme for a non-decreasing performance guarantee of MBRL. Our follow-up derived bounds reveal the relationship between model shifts and performance improvement. These discoveries encourage us to formulate a constrained lower-bound optimization problem to permit the monotonicity of MBRL. A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns. Motivated by these analyses, we design a simple but effective algorithm CMLO (Constrained Model-shift Lower-bound Optimization), by introducing an event-triggered mechanism that flexibly determines when to update the model. Experiments show that CMLO surpasses other state-of-the-art methods and produces a boost when various policy optimization methods are employed.
translated by 谷歌翻译
现有的假新闻检测方法旨在将新闻分类为真或错误,并提供真实的解释,从而实现出色的表现。但是,他们经常根据有限的新闻报道和揭穿延误来定制手动事实检查报告的自动解决方案。如果尚未对一段新闻进行事实检查或揭穿事实,通常会在各种媒体上传播一定数量的相关原始报告,其中包含人群的智慧来验证新闻声明并解释其判决。在本文中,我们提出了一个新颖的粗到十五级别的级联证据依据(COFCED)神经网络,以根据此类原始报告来解释假新闻检测,从而减轻了对事实检查的依赖性。具体而言,我们首先使用层次结构编码器来用于Web文本表示,然后开发两个级联的选择器,以粗略至上的方式在所选的Top-K报告之上选择最可解释的句子。此外,我们构建了两个可解释的假新闻数据集,这些数据集可公开使用。实验结果表明,我们的模型显着优于最先进的基线,并从不同的评估角度产生高质量的解释。
translated by 谷歌翻译
负担基础旨在找到物体的“行动可能性”区域,这是迈向体现智能的重要一步。由于交互负担的多样性,不同个体的独特性会导致各种互动,这使得很难在对象零件和负担能力标签之间建立明确的联系。人的能力将各种自以为是的相互作用转变为不变的以自负的负担来应对互动多样性的影响。为了使代理具有这种能力,本文提出了一项负担得起的任务,即从外向观点(即给定的中心人类对象的互动和以自我为中心的对象图像),学习对象的负担得起的知识并将其传输到中心图像​​中负担标签作为监督。但是,角色之间存在一些“互动偏见”,主要是关于不同的区域和不同观点。为此,我们设计了一个跨视图的负担得起的知识转移框架,该框架从Exentric互动中提取特定于负担的特定功能,并将其转移到以自我为中心的视图中。具体而言,通过保留负担共同关系来增强对负担区域的看法。此外,一个名为AGD20K的负担得起的基础数据集是通过收集和标记20k $ 36 $负担能力类别的20k图像来构建的。实验结果表明,我们的方法优于有关客观指标和视觉质量的代表性模型。代码在https://github.com/lhc1224/cross-view-affordance-grounding上发布。
translated by 谷歌翻译
线云虽然在先前的工作中受到评价不足,但与从多视图图像中提取的点云相比,可能对建筑物的结构信息进行了更紧凑的结构信息。在这项工作中,我们建议第一个处理用于构建线框抽象的线云的网络。该网络将线云作为输入,即从多视图图像提取的3D线段的非结构和无序集,并输出基础建筑物的3D线框,该建筑物由稀疏的3D连接组组成,由线段连接, 。我们观察到一个线斑块,即一组相邻的线段,编码足够的轮廓信息,以预测潜在连接的存在甚至3D位置,以及两个查询连接之间的连通性的可能性。因此,我们引入了两层线斑变压器,以从采样线贴片中提取连接和连接性,以形成3D构建线框模型。我们还介绍了带有地面3D线框的多视图图像的合成数据集。我们广泛证明,在多个基线建筑重建方法上,我们的重建3D线框模型可显着改善。
translated by 谷歌翻译
细颗粒实体打字(FET)旨在推断本文中提及的特定语义类型。 FET的现代方法主要集中于学习某种类型的外观。很少有作品直接建模类型差异,也就是说,让模型知道一种类型与其他类型不同的程度。为了减轻这个问题,我们提出了一种富含类型的FET的分层对比策略。我们的方法可以直接建模层次类型之间的差异,并提高区分多元类似类型的能力。一方面,我们将类型嵌入到实体上下文中,以使类型的信息直接感知。另一方面,我们在层次结构上设计了一个约束的对比策略,以直接建模类型差异,这可以同时感知不同粒度下类型之间的区分性。 BBN,Ontonotes和Figer的三个基准测试的实验结果表明,我们的方法通过有效建模类型差异在FET上实现了显着性能。
translated by 谷歌翻译
现有的文本识别方法通常需要大规模培训数据。由于缺乏带注释的真实图像,他们中的大多数依靠合成训练数据。但是,合成数据和真实数据之间存在域差距,这限制了文本识别模型的性能。最近的自我监督文本识别方法试图通过引入对比度学习来利用未标记的真实图像,这主要学习文本图像的歧视。受到人类学会通过阅读和写作识别文本的观察的启发,我们建议通过在我们的自我监督方法中整合对比度学习和掩盖图像建模来学习歧视和产生。采用对比学习分支来学习对文本图像的歧视,这模仿了人类的阅读行为。同时,首先引入了蒙版的图像建模,以了解文本识别,以了解文本图像的上下文生成,这类似于写作行为。实验结果表明,在不规则场景文本识别数据集上,我们的方法比以前的自我监督文本识别方法优于先前的自我监督文本识别方法。此外,我们提出的文本识别器超过了先前的最新文本识别方法,在11个基准测试中,平均5.3%,模型大小相似。我们还证明,我们的预培训模型可以轻松地应用于具有明显性能增益的其他文本相关任务。
translated by 谷歌翻译
在数字组织病理学分析中,污渍变化通常会降低基于深度学习的方法的概括能力。两项单独的建议,即染色标准化(SN)和染色增强(SA),已聚焦以减少概括错误,在此,前者使用模板图像减轻了不同医疗中心的污渍转移,后者则丰富了后者的污渍样式,并通过污染中心的误差。模拟更多的污渍变化。但是,它们的应用是由选择模板图像和不现实样式的构建的界定。为了解决这些问题,我们将SN和SA与新颖的Randstainna方案统一,该方案在可行的范围内限制了可变污渍样式,以训练污渍不可知论的深度学习模型。 Randstainna适用于在颜色空间集合中染色归一化,即HED,HSV,实验室。此外,我们提出了一个随机的颜色空间选择方案,以提高性能。我们通过两个诊断任务,即具有各种网络骨架的诊断任务,即组织亚型分类和核分割。拟议的Randstainna可以始终如一地提高概括能力,使我们的模型可以应对具有不可预测的污渍样式的更传入的临床数据集,因此所提出的Randstainna的性能优势可以始终如一地提高概括能力。这些代码可从https://github.com/yiqings/randstainna获得。
translated by 谷歌翻译
很少有射击学习(FSL)需要视觉模型来快速适应任务分布的变化的全新分类任务。了解此任务分配转移带来的困难是FSL的核心。在本文中,我们表明,从频道的角度来看,简单的频道特征转换可能是揭开此秘密的关键。当在测试时间数据集中面对新颖的少量任务时,这种转换可以极大地提高学习图像表示的概括能力,同时对培训算法和数据集的选择不可知。通过对这种转变的深入分析,我们发现FSL中表示的难度源于图像表示的严重通道偏置问题:渠道在不同任务中的重要性可能不同,而卷积神经网络可能不敏感,可能是不敏感的,可能是不敏感的,或对这种转变做出错误的反应。这指出了现代视觉系统和未来需要进一步关注的概括能力的核心问题。
translated by 谷歌翻译